Abstract

There are a number of scenarios in which structural members experience torsion, including under the direct application of torsional loading, when transverse loading is applied at an eccentricity to the shear centre and as a second order effect arising from lateral torsional instability. To date, the torsional rigidity of concrete-filled steel tubular (CFST) sections has yet to be fully explored; hence a study into the uniform torsional rigidity of square CFST sections is presented herein. First, the strain energy of square CFST sections is formulated, in which the longitudinal warping displacement is assumed to have an undetermined constant. The undetermined constant is then deduced by means of the principle of minimum strain energy, and thus an analytical expression for the uniform torsional rigidity of square CFST sections is obtained. The accuracy of the derived formula is verified against existing theoretical solutions for simplified scenarios, test data and the results of numerical simulations. Finally, the influence of the key parameters in the derived formula for the torsional rigidity of square CFST sections are analysed, and a simplified design formula is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call