Abstract

Under suitable growth and coercivity conditions on the nonlinear damping operator $g$ which ensure non-resonance, we estimate the ultimate bound of the energy of the general solution to the equation $\ddot{u}(t) + Au(t) + g(\dot{u}(t))=h(t),\quad t\in\mathbb{R}^+ ,$ where $A$ is a positive selfadjoint operator on a Hilbert space $H$ and $h$ is a bounded forcing term with values in $H$. In general the bound is of the form $ C(1+ ||h||^4)$ where $||h||$ stands for the $L^\infty$ norm of $h$ with values in $H$ and the growth of $g$ does not seem to play any role. If $g$ behaves lie a power for large values of the velocity, the ultimate bound has a quadratic growth with respect to $||h||$ and this result is optimal. If $h$ is anti periodic, we obtain a much lower growth bound and again the result is shown to be optimal even for scalar ODEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.