Abstract
The article deals with the question of what is a type of flexural edge wave on a circular plate. It is shown that, in contrast to the case of a rectilinear plate, the flexural edge wave on a circular plate is a wave of fundamentally different type, namely a whispering gallery wave. With an increase in the wave number, this wave gradually turns into an analogue of the Konenkov wave, but this happens in the region of very short waves. The dependence on Poisson’s ratio (the “critical” value of the harmonic number, at which the wave transformation from whispering gallery type to the Konenkov type occurs) is constructed. The certain conditions, under which the transition region does not go beyond the scope of the Kirchhoff theory, are determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.