Abstract

It is well established that the free-space Green's function can be recovered from the two-point cross-correlation function of a random noise field if the noise is white and isotropic. Ambient noise in the ocean rarely satisfies either of these conditions. However, a non-uniform spectrum could be pre-whitened by the application of a suitable filter but anisotropy cannot be so readily eliminated. To investigate the effects of vertical anisotropy, three azimuthally uniform, spatially homogeneous noise fields are analyzed, two of which are idealized, while the third is representative of ambient noise in the deep ocean. In each case, the coherence function, the cross-correlation function, and the derivative of the latter with respect to the correlation delay, are derived for vertical and horizontal alignments of the sensor pair. With vertical sensors, any step-function discontinuity in the directional density function is mapped into a delta function at an appropriate time delay in the derivative (with respect to time delay) of the cross-correlation function. No such mapping occurs with horizontal sensors. In this case, only horizontally traveling noise can generate delta functions in the derivative of the cross-correlation function, and these always appear at the retarded time on either side of the origin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call