Abstract
Optimal control problems with a very large time horizon can be tackled with the receding-horizon control (RHC) method, which consists in solving a sequence of optimal control problems with small prediction horizon. The main result of this article is the proof of the exponential convergence (with respect to the prediction horizon) of the control generated by the RHC method toward the exact solution of the problem. The result is established for a class of infinite-dimensional linear-quadratic optimal control problems with time-independent dynamics and integral cost. Such problems satisfy the turnpike property: the optimal trajectory remains most of the time very close to the solution to the associated static optimization problem. Specific terminal cost functions, derived from the Lagrange multiplier associated with the static optimization problem, are employed in the implementation of the RHC method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.