Abstract

In flotation machines, the operation takes place in a highly turbulent flow. Therefore, the modelling as well as the optimization of a flotation process necessitate the application of essential results of the statistical turbulence theory, where an extensive simplification of the complicated laws is typical for the application in processing. Three effects of turbulence are important in flotation: the turbulent transport phenomena (suspension of particles), the turbulent dispersion of air and the turbulent particle–bubble collisions. While the transport phenomena are mainly caused by the macroturbulence, the microturbulence controls the two last-named microprocesses. In the paper a brief introduction of the theoretical background is given as far as it is necessary for modelling. The effect of turbulence damping by fine particles is also discussed. Models of the microprocesses air dispersion and particle–bubble collisions are presented, and it is clearly demonstrated that the particle–bubble attachment almost exclusively occurs in the zone of high energy dissipation rates, i.e., in the impeller stream. Further on, it is shown that the entrainment of fine particles into the froth lamellae is a result of the suspension state and, therefore, can be influenced by the design of the turbulence generating system (impeller–stator system). Finally, it is demonstrated that there is no feasibility to achieve optimum hydrodynamics for all particle sizes simultaneously. For coarse particle flotation, the power input should be minimized (generation of coarser bubbles; stronger buoyancy and lower turbulent stresses acting on the particle–bubble agglomerates!). In contrast to this, fine particle flotation requires high turbulent collision rates, i.e., a higher power input.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call