Abstract

Settling a first case of a conjecture of M. Kahle on the homology of the clique complex of the random graph $G=G_{n,p}$, we show, roughly speaking, that (with high probability) the triangles of $G$ span its cycle space whenever each of its edges lies in a triangle (which happens (w.h.p.) when $p$ is at least about $\sqrt{(3/2)\ln n/n}$, and not below this unless $p$ is very small.) We give two related proofs of this statement, together with a relatively simple proof of a fundamental stability theorem for triangle-free subgraphs of $G_{n,p}$, originally due to Kohayakawa, \L uczak and R\odl, that underlies the first of our proofs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.