Abstract
As part of our study of convergence to equilibrium for spatially inhomogeneous kinetic equations, started in [21], we derive estimates on the rate of convergence to equilibrium for solutions of the Boltzmann equation, like O(t-∞). Our results hold conditionally to some strong but natural estimates of smoothness, decay at large velocities and strict positivity, which at the moment have only been established in certain particular cases. Among the most important steps in our proof are 1) quantitative variants of Boltzmann’s H-theorem, as proven in [52,60], based on symmetry features, hypercontractivity and information-theoretical tools; 2) a new, quantitative version of the instability of the hydrodynamic description for non-small Knudsen number; 3) some functional inequalities with geometrical content, in particular the Korn-type inequality which we established in [22]; and 4) the study of a system of coupled differential inequalities of second order, by a treatment inspired from [21]. We also briefly point out the particular role of conformal velocity fields, when they are allowed by the geometry of the problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.