Abstract

Selfish Network Creation focuses on modeling real world networks from a game-theoretic point of view. One of the classic models by Fabrikant et al.[PODC'03] is the network creation game, where agents correspond to nodes in a network which buy incident edges for the price of alpha per edge to minimize their total distance to all other nodes. The model is well-studied but still has intriguing open problems. The most famous conjectures state that the price of anarchy is constant for all alpha and that for alpha >= n all equilibrium networks are trees. We introduce a novel technique for analyzing stable networks for high edge-price alpha and employ it to improve on the best known bounds for both conjectures. In particular we show that for alpha > 4n-13 all equilibrium networks must be trees, which implies a constant price of anarchy for this range of alpha. Moreover, we also improve the constant upper bound on the price of anarchy for equilibrium trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.