Abstract

AbstractThe particle finite element method (PFEM) combines the benefits of discrete modeling techniques and approaches based on continuum mechanics. It provides a convenient tool to deal with the problem of large configurational change, such as metal cutting, in which nonlinear plasticity plays a key role [1]. In this article we introduce a phenomenological plasticity model with the help of a multiplicative decomposition of the deformation gradient and an intermediate local configuration into the PFEM framework. Numerical examples of cutting simulations are presented to show the performance of the formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.