Abstract

We study a variant of the classical transportation problem in which suppliers with limited capacities have a choice of which demands (markets) to satisfy. We refer to this problem as the transportation problem with market choice (TPMC). While the classical transportation problem is known to be strongly polynomial-time solvable, we show that its market choice counterpart is strongly NP-complete. For the special case when all potential demands are no greater than two, we show that the problem reduces in polynomial time to minimum weight perfect matching in a general graph, and thus can be solved in polynomial time. We give valid inequalities and coefficient update schemes for general mixed-integer sets that are substructures of TPMC. Finally, we give conditions under which these inequalities define facets, and report our preliminary computational experiments with using them in a branch-and-cut algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.