Abstract

Collisionless shocks and plasma turbulence are crucial ingredients for a broad range of astrophysical systems. The shock–turbulence interaction, and in particular the transmission of fully developed turbulence across the quasi-perpendicular Earth’s bow shock, is here addressed using a combination of spacecraft observations and local numerical simulations. An alignment between the Wind (upstream) and Magnetospheric Multiscale (downstream) spacecraft is used to study the transmission of turbulent structures across the shock, revealing an increase of their magnetic helicity content in its downstream. Local kinetic simulations, in which the dynamics of turbulent structures are followed through their transmission across a perpendicular shock, confirm this scenario, revealing that the observed magnetic helicity increase is associated with the compression of turbulent structures at the shock front.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.