Abstract

A theory of the transmission channels and current-voltage characteristics of a double-barrier resonant tunneling structure driven by dc electric and high-frequency electromagnetic fields of arbitrary strength is proposed based on an obtained exact solution to the complete one-dimensional Schrodinger equation. It is shown for the first time that an increase in the electromagnetic-field strength leads (as a result of the formation of nonresonant transmission channels in the nanostructure) to a change in its current-voltage characteristic from a single-humped to double-humped curve not only in the vicinities of the electron-resonance energies but also in the energy ranges corresponding to the superpositions of pairs of field satellite states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.