Abstract

We present a universal model for the transient drain current response in organic electrochemical transistors (OECTs). Using equivalent circuits and charge injection physics, we are able to predict the drain current in OECT devices upon application of a gate voltage input. The model is applicable to both plain and membrane-functionalized devices, and allows us to extract useful physical quantities such as resistances and capacitances, which are related to functional properties of the system. We are also able to use the model to reconstruct the magnitude and shape in time of an applied voltage source based on the observed drain current response. This was experimentally demonstrated for drain current measurements under an applied action potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call