Abstract

Abstract The airplane data collected between 4 and 12 km above the Pyrenees during the intensive observation period (IOP) 3 of the Pyrenees Experiment (PYREX) are analyzed again. A spectral analysis of the velocity and potential temperature series shows that the mountain waves are dominated by two oscillations with well-defined horizontal wavenumbers. At nearly all altitudes, at least one among these two oscillations can be extracted: the short oscillation dominates the signal below 6 km and the long one above. These two oscillations contribute to the Reynolds stress below 5 km and not above. Linear steady nondissipative simulations show that the short oscillation is a trapped resonant mode and the long one a leaking, or partially leaking, resonant mode of the background flow. Pseudo-momentum flux budgets show that the short resonant mode only contributes to the Reynolds stress at low level (here below 3 to 4 km typically) while the long one contributes to the Reynolds stress at all levels. At low level, ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.