Abstract

Opening a door, turning a steering wheel, rotating a coffee mill are typical examples of human movements constrained by the external environment. The constraints decrease the mobility of the human arm and leads to the redundancy in the distribution of the interaction force between the arm joints. Due to the redundancy of the force actuation in the constrained motions, there is infinite number of ways to form the trajectory of the arm. However, human forms the hand trajectory in a unique way. How does human resolve the redundancy of the constrained motions and specify the hand trajectory? To investigate these problems, we examine the trajectory of human arm in a crank rotation task. To explain the trajectory formation in constrained point-to-point motions, we formulate an optimal control problem and propose a novel criterion minimizing the hand contact force change and muscle force change over the time of movement. The simulation results are compared with human motion and force profiles obtained experimentally. It is shown that the novel criterion captures the characteristics of the human constrained motion much more satisfactory than conventional criteria accepted in the research community.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call