Abstract

Making the transition from simulation to reality in evolutionary robotics is known to be challenging. What is known as the reality gap, summarizes the set of problems that arises when robot controllers have been evolved in simulation and then are transferred to the real robot. In this paper we study an additional problem that is beyond the reality gap. In simulations, the robot needs no protection against damage, while on the real robot that is essential to stay cost-effective. We investigate how the probability of collisions can be minimized by introducing appropriate penalties to the fitness function. A change to the fitness function, however, changes the evolutionary dynamics and can influence the optimization success negatively. Therefore, we detect a tradeoff between a required hardware protection and a reduced efficiency of the evolutionary optimization process. We study this tradeoff on the basis of a robotics case study in autonomous parallel parking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.