Abstract

In this paper, we study the relationship between two crucial properties in linear dynamical networks of diffusively coupled agents, that is controllability and robustness to noise and structural changes in the network. In particular, for any given network size and diameter, we identify networks that are maximally robust and then analyze their strong structural controllability. We do so by determining the minimum number of leaders to make such networks completely controllable with arbitrary coupling weights between agents. Similarly, we design networks with the same given parameters that are completely controllable independent of coupling weights through a minimum number of leaders, and then also analyze their robustness. We utilize the notion of Kirchhoff index to measure network robustness to noise and structural changes. Our controllability analysis is based on novel graph-theoretic methods that offer insights on the important connection between network robustness and strong structural controllability in such networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.