Abstract
AbstractThe subject is traces of Sobolev spaces with mixed Lebesgue norms on Euclidean space. Specifically, restrictions to the hyperplanes given by x1 = 0 and xn = 0 are applied to functions belonging to quasi‐homogeneous, mixed norm Lizorkin–Triebel spaces ; Sobolev spaces are obtained from these as special cases. Spaces admitting traces in the distribution sense are characterised up to the borderline cases; these are also covered in case x1 = 0. For x1 the trace spaces are proved to be mixed‐norm Lizorkin–Triebel spaces with a specific sum exponent; for xn they are similarly defined Besov spaces. The treatment includes continuous right‐inverses and higher order traces. The results rely on a sequence version of Nikol'skij's inequality, Marschall's inequality for pseudodifferential operators (and Fourier multiplier assertions), as well as dyadic ball criteria. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.