Abstract
AbstractIn this paper we show that the quotient Aubry set, associated to a sufficiently smooth mechanical or symmetrical Lagrangian, is totally disconnected (i.e. every connected component consists of a single point). This result is optimal, in the sense of the regularity of the Lagrangian, as Mather’s counterexamples (J. N. Mather. Examples of Aubry sets. Ergod. Th. & Dynam. Sys.24(5) (2004), 1667–1723) show. Moreover, we discuss the relation between this problem and a Morse–Sard-type property for (the difference of) critical subsolutions of Hamilton–Jacobi equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.