Abstract

Topotactic reduction is critical to a wealth of phase transitions of current interest, including synthesis of the superconducting nickelate Nd0.8Sr0.2NiO2, reduced from the initial Nd0.8Sr0.2NiO3/SrTiO3 heterostructure. Due to the highly sensitive and often damaging nature of the topotactic reduction, however, only a handful of research groups have been able to reproduce the superconductivity results. A series of in situ synchrotron-based investigations reveal that this is due to the necessary formation of an initial, ultrathin layer at the Nd0.8Sr0.2NiO3 surface that helps to mediate the introduction of hydrogen into the film such that apical oxygens are first removed from the Nd0.8Sr0.2NiO3 / SrTiO3 (001) interface and delivered into the reducing environment. This allows the square-planar / perovskite interface to stabilize and propagate from the bottom to the top of the film without the formation of interphase defects. Importantly, neither geometric rotations in the square planar structure nor significant incorporation of hydrogen within the films is detected, obviating its need for superconductivity. These findings unveil the structural basis underlying the transformation pathway and provide important guidance on achieving the superconducting phase in reduced nickelatesystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.