Abstract
AbstractTraditional gravimetric geoid determination relies on Stokes’ formula with removal and restoration of the topographic effects. It is shown that this solution is in error of the order of the quasigeoid-to-geoid difference, which is mainly due to incomplete downward continuation (dwc) of gravity from the Earth’s surface to the geoid. A slightly improved estimator, based on the surface Bouguer gravity anomaly, is also biased due to the imperfect harmonic dwc the Bouguer anomaly. Only the third estimator,which uses the (harmonic) surface no-topography gravity anomaly, is consistent with the boundary condition and Stokes’ formula, providing a theoretically correct geoid height. The difference between the Bouguer and no-topography gravity anomalies (on the geoid or in space) is the “secondary indirect topographic effect”, which is a necessary correction in removing all topographic signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.