Abstract

Production and maker spaces are increasingly generating mixed plastic material waste of varying quality from 3-D printers. Industrial interest is growing in embedding granulated recycled particulate material additives into a virgin binding matrix. Examples include the introduction of granulated mixed recycled materials into 3-D printer material, concrete, and pavement. The stress load-sharing between the particulate additive and the binding matrix is an important factor in design and development of these composite materials. With mixed material additives, a designer is interested in the variation of such predicted load-sharing. However, experimental development is costly and time-consuming, thus analytical and semi-analytical estimates are desired for accelerated development. In this work, we expand on previous analytically correlated phase-averaged micro- and macrostructural loading to include variational effects present in mixed recycled material. In addition, model trade-offs are provided to aid designers in quickly selecting application specific mixtures. This framework identifies the stress contributions, and their variation, to reduce product development time and costs, which could greatly accelerate material recycling and reuse for improved infrastructure materials, low-cost 3-D printer filament, and reduced waste towards a more circular economy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.