Abstract

The time resolution of the atomic emission spectroelectrochemical (AESEC) flow cell has been investigated by numerical simulations. The results demonstrate that the time resolution of the AESEC electrochemical flow cell may be simulated numerically based on the consideration of electrolyte flow patterns and ion transport in the cell. The residence time distribution (RTD) closely approximates a log-normal distribution for both experiment and simulation. Time resolution may be improved by increasing the flow rate, however this also leads to marked heterogeneities in the flow field near the surface. An optimum flow rate of 3 cm3 min−1 was determined. The problem may be avoided somewhat by using a mask to cover all the surface except for a small portion near the center of the flow cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.