Abstract

We consider the one-dimensional wave equationεutt-uxx+[1+εf′(u)]ut+f(u)=hwhere ε=ε(t) is a decreasing function vanishing at infinity, providing a model for heat conduction of Cattaneo type with thermal resistance decreasing in time. Within the theory of processes on time-dependent spaces, we prove the existence of an invariant time-dependent attractor, which converges in a suitable sense to the attractor of the classical Fourier equationut-uxx+f(u)=hformally arising in the limit t→∞.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.