Abstract

The three-dimensional time-mean density distribution in the ocean is determined not only by the time-mean fluxes of heat and freshwater at the sea surface, but also by time-mean vertical currents and time-mean density fluxes due to oceanic transients excited by fluctuating fluxes at the sea surface. The effects of these various processes on the global density fields are assessed using a balance equation of the variance of spatial density anomalies and a millennium integration with an atmosphere–ocean general circulation model. It is found that spatial density anomalies are generated by the time-mean heat fluxes at the sea surface and destroyed by the time-mean surface freshwater flux, by sinking of dense water and rising of less dense water, and finally by density fluxes associated with transients. The last two processes take place essentially in the oceanic interior. Since density fluxes of transient eddies act to reduce the existing density differences between the Atlantic/Southern Oceans and the other oceans, their presence could affect the global density balance, and from that the thermohaline circulation and the stability of this circulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.