Abstract
In this work, we consider the three-dimensional viscoelastic fluid flow equations, arising from the motion of Kelvin-Voigt fluids in bounded and unbounded domains. We investigate the global solvability results, asymptotic behavior and also address some control problems of such viscoelastic fluid flow equations with fading and memory of length \begin{document}$ \tau $\end{document} . A local monotonicity property of the linear and nonlinear operators and a localized version of the Minty-Browder technique are used to obtain global solvability results. Since we are not using compactness arguments in the proofs, the global solvability results are also valid in unbounded domains like Poincare domains. We also remark that using an \begin{document}$ m $\end{document} -accretive quantization of the linear and nonlinear operators, one can establish the existence and uniqueness of strong solutions for the Navier-Stokes-Voigt equations and avoid the tedious Galerkin approximation scheme. We examine the asymptotic behavior of the stationary solutions and also establish the exponential stability results. Finally, under suitable assumptions on the Galerkin basis, we consider the controlled Galerkin approximated 3D Kelvin-Voigt fluid flow equations. Using the Hilbert uniqueness method combined with Schauder's fixed point theorem, the exact controllability of the finite dimensional Galerkin approximated system is established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.