Abstract
A detailed study on thermally driven flows through divergent micro/nanochannels is presented. Rarefied gas flow behavior and thermal mass flow rate were investigated with different divergence angles ranging between 0[Formula: see text] and 7[Formula: see text] at two aspect ratios ([Formula: see text]) using particle-based direct simulation Monte-Carlo (DSMC) method. We compare our DSMC solutions for normalized thermal mass flow rate with the numerical solution of the Boltzmann–Krook–Walender (BKW) model and Bhatnagar–Gross–Krook (BGK) model and asymptotic theory over a wide range of Knudsen number in the transition regime. The flow field properties including Mach number, pressure, overall temperature and magnitude of shear stress are examined in detail. Based on our analysis, we observed an approximately constant velocity and pressure distribution at a microchannel with a small opening angle. Our results also demonstrate that the heat lines from weakly nonlinear form of Sone constitutive law and DSMC show good agreement at low Knudsen numbers. Moreover, we show that the effect of divergence angle is influential in increasing normalized thermal mass flow rate at early transition regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.