Abstract

This paper addresses the thermal properties of syntactic metal foam made by embedding expanded perlite particles in A356 aluminium matrix. Lattice Monte Carlo (LMC) analyses are conducted to determine the thermal characterisation of the foam. For increased accuracy, the complex geometry of the metallic foam is captured by micro-computed tomography imaging. Using the resulting detailed geometric models, the effective thermal conductivity tensor is computed with possible thermal anisotropy taken into consideration. The numerical results are verified by comparison with experimental measurements. To this end, an improved steady-state method is used to correct for thermal contact resistance. Furthermore, the effective heat capacity, average density and thermal diffusivity of perlite – metal syntactic foam are determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.