Abstract

Regarding their ability to enhance conventional thermal oils' thermophysical properties, oil-based hybrid nanofluids have recently been widely investigated by researchers, especially on lubrication and cooling application in the automotive industry. Thermal conductivity is one of the most crucial thermophysical properties of oil-based hybrid nanofluids, which has been studied in a minimal case of studies on the specific types of them. In this research, for the first time, a comprehensive data-intelligence analysis performed on 400 gathered data points of various types of oil-based hybrid nanofluids using a novel hybrid machine learning approach; the Extended Kalman Filter-Neural network (EKF-ANN). The genetic programming (GP) and response surface methodology (RSM) approaches were examined to appraise the main paradigm. In this research, the best subset regression analysis, as a novel feature selection scheme, was provided for finding the best input parameter among all existing predictive variables (the volume fraction, temperature, thermal conductivity of the base fluid, mean diameter, and bulk density of nanoparticles). The provided models were examined using several statistical metrics, graphical tools and trends, and sensitivity analysis. The results assessment indicated that the EKF-ANN in terms of (R = 0.9738, RMSE = 0.0071 W/m.K, and KGE = 0.9630) validation phase outperformed the RSM (R = 0.9671, RMSE = 0.0079 W/m.K, and KGE = 0.9593) and GP (R = 0.9465, RMSE = 0.010 W/m.K, and KGE = 0.9273), for accurate estimation of the thermal conductivity of oil-based hybrid nanofluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.