Abstract

The thermal behavior and structural changes of representative types of lithiated graphitic materials were investigated in solutions comprising ethylene carbonate (EC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC) and LiPF6. We show that the protective films formed on intercalated graphite electrodes upon cathodic polarization are stable in these electrolyte solutions up to ∼80°C, in DSC experiments. Upon increasing the temperature, between 80 and 120°C, reactions of the surface films with solution species take place and the level of the graphite lithiation is reduced. After destruction of the surface films on lithiated graphite at higher temperatures >120°C, solvent molecules diffuse into the graphite particles and interact with Li ions therein thus forming reduction products. The later decompose upon further heating at temperatures >200°C, with the formation of gaseous products. This results in an internal pressure within the graphite particles that causes their partial exfoliation in an endothermic process. While the protective surface films on the lithiated graphite are removed from the particles in the course of the thermal reactions, we have indications that surface films on fully delithiated graphite do not react with the electrolyte solution at least up to 200°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.