Abstract

The dependence of the rate of the reaction CO+OH-->H+CO2 on the CO-vibrational excitation is treated here theoretically. Both the Rice-Ramsperger-Kassel-Marcus (RRKM) rate constant kRRKM and a nonstatistical modification knon [W.-C. Chen and R. A. Marcus, J. Chem. Phys. 123, 094307 (2005).] are used in the analysis. The experimentally measured rate constant shows an apparent (large error bars) decrease with increasing CO-vibrational temperature Tv over the range of Tv's studied, 298-1800 K. Both kRRKM(Tv) and knon(Tv) show the same trend over the Tv-range studied, but the knon(Tv) vs Tv plot shows a larger effect. The various trends can be understood in simple terms. The calculated rate constant kv decreases with increasing CO vibrational quantum number v, on going from v=0 to v=1, by factors of 1.5 and 3 in the RRKM and nonstatistical calculations, respectively. It then increases when v is increased further. These results can be regarded as a prediction when v state-selected rate constants become available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.