Abstract
A theory is proposed and numerical simulation is conducted for oppositely charged mutually approaching droplets of an aqueous electrolytic solution in silicon oil. It is shown that at small distances between droplets, a conductive bridge leveling out the potentials of the droplets may form between them due to electrohydrodynamic instability of the equilibrium surface of one of the droplets. As a result, the droplets start to repel each other and may drift apart without coagulation. The proposed theory is confirmed by the effect of nonconfluent droplets observed in experiments [W.D. Ristenpart, J.C. Bird, A. Belmonte, et al., Nature 461, 377 (2009)].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.