Abstract
We discuss the transport of a tracer particle through the Bose Einstein condensate of a Bose gas. The particle interacts with the atoms in the Bose gas through two-body interactions. In the limiting regime where the particle is very heavy and the Bose gas is very dense, but very weakly interacting ("mean-field limit"), the dynamics of this system corresponds to classical Hamiltonian dynamics. We show that, in this limit, the particle is decelerated by emission of gapless modes into the condensate (Cerenkov radiation). For an ideal gas, the particle eventually comes to rest. In an interacting Bose gas, the particle is decelerated until its speed equals the propagation speed of the Goldstone modes of the condensate. This is a model of "Hamiltonian friction". It is also of interest in connection with the phenomenon of "decoherence" in quantum mechanics. It is based on work we have carried out in collaboration with D Egli, IM Sigal and A Soffer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.