Abstract

The scattering problem for a non-relativistic spinless particle under the influence of a complex effective potential, which is spherically symmetric and tends to zero faster than 1 r at infinity, is considered. Certain general relations, which illuminate the influence of the imaginary part of the potential on the scattering process, are derived with the use of the expression for the probability current density. The rigorous phase-integral method developed by N. Fröman and P. O. Fröman is used for obtaining an exact, general formula for the scattering matrix, or, equivalently, for the phase shift. The formula is expressed in terms of phase-integral approximations of an arbitrary order and certain quantities defined by convergent series. Estimating the latter quantities and omitting small corrections, an approximate formula is derived for the phase shift, valid for the case that only one complex turning point contributes essentially to the phase shift. Criteria for classifying a scattering problem as such a one-turning-point problem are given. The treatment is made general enough to also cover situations of interest in Regge-pole or complex angular momentum theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.