Abstract

Effects of structural and energetic disorder on nonadiabatic electron transfer (ET) reactions are discussed theoretically. To account for the sequential as well as the superexchange mechanism of ET our recent approach is used presented in J. Phys. Chem. A 105, 10176 (2001). The overall charge motion is characterized by the numerical solution of rate equations for the electronic state populations and an averaging with respect to the disorder configurations. Introducing a single effective transfer rate which can be deduced from the experiment the dependence of this rate is discussed on the geometry of the ET system as well as on the disorder model. The theory is applied to donor-acceptor complexes connected by oligomers of the amino acid proline. In particular, a pronounced dependence is found of the effective transfer rate on disorder with respect to the reorganization energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call