Abstract

Abstract The Landau levels in graphene in crossed magnetic and electric fields are dependent on the electric field. However, this effect is not taken into account in many theoretical studies of graphene in crossed fields. In particular, it is not considered in the Nernst–Ettingshausen effect, in which the regime of crossed fields is realized. In this Letter, we considered the Nernst–Ettingshausen effect in monolayer and bilayer graphene, taking into account the dependence of Landau levels on the electric field. We showed that the magnitude and period of the Nernst coefficient oscillations depend on the electric field. This fact is important for the fundamental theory of Nernst–Ettingshausen effect in graphene and gives the new possibility for control of this effect using an applied electric field. The latter is very interesting for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.