Abstract
Abstract A detailed theory of the line shape in linear absorption spectroscopy of low-pressure gases is developed. The goal is to take into account all effects that come into play in the determination of Boltzmann's constant from measurements of the Doppler width. We demonstrate that there is no additional broadening from finite transit time across the laser beams. The molecular recoil and the second-order Doppler effect are included in the line shape thanks to a complete quantum treatment. The Mossbauer–Lamb–Dicke narrowing of Doppler lines by collisions is also included and the special cases of Galatry and Nelkin–Ghatak profiles are presented. To cite this article: C.J. Borde, C. R. Physique 10 (2009).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.