Abstract

We show that a common evolutionary history can produce the black hole binaries in the Galaxy in which the black holes have masses of ~ 5 - 10M⊙. In the black hole binaries with low-mass, ≲ 2.5M⊙ ZAMS (zero age main sequence) companions, the latter remain in main sequence during the active stage of soft X-ray transients (SXT's), most of them being of K or M classification. In two intermediate cases, IL Lupi and Nova Scorpii with ZAMS ~ 2.5M⊙ companions the orbits are greatly widened because of large mass loss in the explosion forming the black hole, and whereas these companions are in late main sequence evolution, they are close to evolving. Binaries with companion ZAMS masses ≳ 3M⊙ are initially "silent" until the companion begins evolving across the Herzsprung gap. We provide evidence that the narrower, shorter period binaries, with companions now in main sequence, are fossil remnants of gamma ray bursters (GRB's). We also show that the GRB is generally accompanied by a hypernova explosion (a very energetic supernova explosion). We further show that the binaries with evolved companions are good models for some of the ultraluminous X-ray sources (ULX's) recently seen by Chandra in other galaxies. The great regularity in our evolutionary history, especially the fact that most of the companions of ZAMS mass ≲ 2.5M⊙ remain in main sequences as K or M stars can be explained by the mass loss in common envelope evolution to be Case C; i.e. to occur only after core He burning has finished. Since our argument for Case C mass transfer is not generally understood in the community, we add an appendix, showing that with certain assumptions which we outline we can reproduce the regularities in the evolution of black hole binaries by Case C mass transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call