Abstract

We investigate theoretically the polarization switching kinetics in ferroelectrics, both bulk and thin films samples. In such substances, the domain walls are pinned by (usually dipole) defects, which are present also in ordered samples as technologically unavoidable impurities. This random interaction with dipole pinning centers results, in particular, in exponentially broad distribution of switching times. Under supposition of low pinning centers concentration, we derive the distribution function of switching times showing that it is not simply Lorentzian (as it was first suggested by Tagantsev et al. [Phys. Rev. B 66 (2002) 214109]), but is a “square of Lorentzian”, which is due to the vector nature of electric field. This improved formalism delivers a better description of available experimental data and elucidates the physical mechanism of domain switching times distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.