Abstract

We present a theory of the dielectric response of solutions containing large solutes, of the nanometer size, in a molecular solvent. It combines the molecular dipole moment of the solute with the polarization of a large subensemble of solvent molecules at the solute–solvent interface. The goal of the theory is two-fold: (i) to formulate the problem of the dielectric response avoiding the reliance on the cavity-field susceptibility of dielectric theories and (ii) to separate the non-additive polarization of the interface, jointly produced by the external field of the laboratory experiment and the solute, from specific solute–solvent interactions contributing to the dielectric signal. The theory is applied to experimentally reported frequency-dependent dielectric spectra of lysozyme in solution. The analysis of the data in the broad range of frequencies up to 700 GHz shows that the cavity-field susceptibility, critical for the theory formulation, is consistent with the prediction of Maxwell’s electrostatics in the frequency range of 10–200 GHz, but deviates from it outside this range. In particular, it becomes much smaller than the Maxwell result, and shifts to negative values, at small frequencies. The latter observation implies a dia-electric response, or negative dielectrophoresis, of hydrated lysozyme. It also implies that the effective protein dipole recorded by dielectric spectroscopy is much smaller than the value calculated from the protein’s charge distribution. We suggest an empirical equation that describes both the increment of the static dielectric constant and the decrement of the Debye water peak with increasing protein concentration. It gives fair agreement with broad-band dispersion and loss spectra of protein solutions, but misses the δ-dispersion region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.