Abstract

This paper investigates the so-called tertiary instabilities driven by the zonal flow in gyro-kinetic tokamak core turbulence. The Kelvin Helmholtz instability is first considered within a 2D fluid model and a threshold in the zonal flow wave vector kZF>kZF,c for instability is found. This critical scale is related to the breaking of the rotational symmetry by flux-surfaces, which is incorporated into the modified adiabatic electron response. The stability of undamped Rosenbluth-Hinton zonal flows is then investigated in gyro-kinetic simulations. Absolute instability, in the sense that the threshold zonal flow amplitude tends towards zero, is found above a zonal flow wave vector kZF,cρi≈1.3 (ρi is the ion thermal Larmor radius), which is comparable to the 2D fluid results. Large scale zonal flows with kZF<kZF,c are unstable for sufficiently large amplitudes with increasing trend for an increasing radial scale. However, the critical E × B-shearing rate associated with the stability boundary ωE×B,c exceeds typical values connected to the pure flow state at marginal stability by more than an order of magnitude, which therefore lies deeply in the stable parameter region. Furthermore, the impact of zonal temperature perturbations on the tertiary instability is examined. Although temperature perturbations favor instability, the realistic values of gradient-driven gyro-kinetic simulations still lie deeply in the stable parameter regime. Therefore, the relevance of the tertiary instability as a saturation mechanism to the zonal flow amplitude is questioned, as most of the zonal flow intensity is concentrated in modes satisfying kZF≪kZF,c as well as ωE×B≪ωE×B,c. At the request of the authors, this article is being retracted effective 11 June 2020.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call