Abstract

T he heat generated due to plastic deformation at the tip of a dynamically propagating crack in a metal causes a large local temperature increase at the crack tip which is expected to affect the selection of failure modes during dynamic fracture and to thus influence the fracture toughness of the material. The distribution of temperature at the tips of dynamically propagating cracks in two heat treatments of AISI 4340 carbon steel was investigated experimentally using an array of eight high speed indium antimonide, infrared detectors. Experiments were performed on wedge loaded, compact tension specimens with initially blunted cracks, producing crack speeds ranging from 1900 to 730 m/s. The measurements provide the spatial distribution of temperature increase near the crack tip on the specimen surface. Temperature increases were as high as 465° C over ambient and the region of intense heating (greater than 100° C temperature rise) covered approximately one third of the active plastic zone on the specimen surface. The observed temperature increase profiles clearly show the three-dimensional nature of the fracture process near the specimen surface and provide valuable information regarding the dynamic formation of shear lips and their role in the dissipation of energy during dynamic crack growth. Preliminary temperature measurements performed on side-grooved specimens are also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call