Abstract

The Tianshan Mountains are known as the “water tower” in the arid region of Central Asia. Change in precipitation amount and pattern can have a profound impact on regional civilization and life supporting ecosystems. For this study, a systematic analysis of long-term precipitation data for the eastern Tianshan Mountains was conducted to investigate the influence of climate teleconnections on annual and intra-annual precipitation using data collected between 1951 and 2014 from 39 meteorological stations. Annual precipitation has increased during the past six decades at an average rate of 6.7 mm/10 years largely due to the increase in precipitation during the intra-annual wet period (May–October). The annual precipitation and its rate of increase were higher in the northwestern region. Annual precipitation was found to be most strongly correlated with index of Indian Summer Monsoon (ISM), and partially correlated with indices of Pacific Decadal Oscillation (PDO), Pacific North American Teleconnection Pattern (PNA), Arctic Oscillation (AO), El Nino–Southern Oscillation (ENSO), and North Atlantic Oscillation (NAO). ISM was positively correlated with the precipitation in almost the entire region during the intra-annual wet period, while it showed positive correlations in the northern slope and the alpine region, and negative correlations in the southern slope during the intra-annual dry period (November to April). PDO had much weaker influence both in spatial scale and strength and primarily affected low elevations on the southern slopes of the middle and western regions. The impacts of PNA and AO on precipitation were weak and localized. ENSO and NAO indices were almost not correlated with annual precipitation observation in the eastern Tianshan Mountains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call