Abstract

We study the one-dimensional version of the Rudin–Osher–Fatemi (ROF) denoising model and some related TV-minimization problems. A new proof of the equivalence between the ROF model and the so-called taut string algorithm is presented, and a fundamental estimate on the denoised signal in terms of the corrupted signal is derived. Based on duality and the projection theorem in Hilbert space, the proof of the taut string interpretation is strictly elementary with the existence and uniqueness of solutions (in the continuous setting) to both models following as by-products. The standard convergence properties of the denoised signal, as the regularizing parameter tends to zero, are recalled and efficient proofs provided. The taut string interpretation plays an essential role in the proof of the fundamental estimate. This estimate implies, among other things, the strong convergence (in the space of functions of bounded variation) of the denoised signal to the corrupted signal as the regularization parameter vanishes. It can also be used to prove semi-group properties of the denoising model. Finally, it is indicated how the methods developed can be applied to related problems such as the fused lasso model, isotonic regression and signal restoration with higher-order total variation regularization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.