Abstract

The derivative of self-intersection local time (DSLT) for Brownian motion was introduced by Rosen (2005) and subsequently used by others to study the L2 and L3 moduli of continuity of Brownian local time. A version of the DSLT for fractional Brownian motion (fBm) was introduced in Yan et al. (2008); however, the definition given there presents difficulties, since it is motivated by an incorrect application of the fractional Itô formula. To rectify this, we introduce a modified DSLT for fBm and prove existence using an explicit Wiener chaos expansion. We will then argue that our modification is the natural version of the DSLT by rigorously proving the corresponding Tanaka formula. This formula corrects a formal identity given in both Rosen (2005) and Yan et al. (2008). In the course of this endeavor we prove a Fubini theorem for integrals with respect to fBm. The Fubini theorem may be of independent interest, as it generalizes (to Hida distributions) similar results previously seen in the literature. As a further byproduct of our investigation, we also provide a small correction to an important technical second-moment bound for fBm which has appeared in the literature many times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.