Abstract

We present a method for computing the table of marks of a direct product of finite groups. In contrast to the character table of a direct product of two finite groups, its table of marks is not simply the Kronecker product of the tables of marks of the two groups. Based on a decomposition of the inclusion order on the subgroup lattice of a direct product as a relation product of three smaller partial orders, we describe the table of marks of the direct product essentially as a matrix product of three class incidence matrices. Each of these matrices is in turn described as a sparse block diagonal matrix. As an application, we use a variant of this matrix product to construct a ghost ring and a mark homomorphism for the rational double Burnside algebra of the symmetric group S3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.