Abstract

Complex organic molecules are ubiquitous in star- and planet-forming regions as well as on comets such as on 67P/Churyumov-Gerasimenko, but their origins have remained largely unexplained until now. Here, we report the first laboratory detection of distinct C3 H8 O (propanol, methyl ethyl ether) and C4 H8 O (n-butanal, i-butanal) isomers formed within interstellar analog ices through interaction with ionizing radiation. This study reveals that complex organics with propyl (C3 H7 ) and butyl (C4 H9 ) groups can be synthesized easily in deep space and may act as key evolutionary tracers of a cosmic ray driven non-equilibrium chemistry in low temperature interstellar ices at 10 K. These processes are of vital importance in initiating a chain of chemical reactions leading to complex organics-some of which are responsible for the flavors of chocolate-not only in the interstellar medium, but also on comet 67P/Churyumov-Gerasimenko.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.