Abstract

We push further a recently proposed approach for studying synchronizing automata and Cerný’s conjecture, namely, the synchronizing probability function. In this approach, the synchronizing phenomenon is reinterpreted as a Two-Player game, in which the optimal strategies of the players can be obtained through a Linear Program. Our analysis mainly focuses on the concept of triple rendezvous time, the length of the shortest word mapping three states onto a single one. It represents an intermediate step in the synchronizing process, and is a good proxy of its overall length. Our contribution is twofold. First, using the synchronizing probability function and properties of linear programming, we provide a new upper bound on the triple rendezvous time. Second, we disprove a conjecture on the synchronizing probability function by exhibiting a family of counterexamples. We discuss the game theoretic approach and possible further work in the light of our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.