Abstract
We provide a purely local computation of the (elliptic) twisted (by “transpose-inverse”) character of the representationπ=I(1) of PGL(3) over ap-adic field induced from the trivial representation of the maximal parabolic subgroup. This computation is independent of the theory of the symmetric square lifting of [IV] of automorphic and admissible representations of SL(2) to PGL(3). It leads — see [FK] — to a proof of the (unstable) fundamental lemma in the theory of the symmetric square lifting, namely that corresponding spherical functions (on PGL(2) and PGL(3)) are matching: they have matching orbital integrals. The new case in [FK] is the unstable one. A direct local proof of the fundamental lemma is given in [V].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.